Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group  

Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group

在线阅读下载全文

作  者:Huimin Cheng Feng Zhou Huimin Cheng;Feng Zhou(School of Mathematics and Statistics, Shandong Normal University, Jinan, China)

机构地区:[1]School of Mathematics and Statistics, Shandong Normal University, Jinan, China

出  处:《Advances in Pure Mathematics》2024年第9期744-758,共15页理论数学进展(英文)

摘  要:In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group.In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group.

关 键 词:Heisenberg Group Sub-Elliptic Equations REGULARITY Besov Spaces 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象