检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Logan Nye Logan Nye(School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA)
机构地区:[1]School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
出 处:《Advances in Pure Mathematics》2025年第2期145-181,共37页理论数学进展(英文)
摘 要:We present a proof of the Strominger-Yau-Zaslow (SYZ) conjecture by demonstrating that mirror symmetry fundamentally represents an equivalence of computational structures between Calabi-Yau manifolds. Through development of a rigorous quantum complexity operator formalism, we show that mirror pairs must have equivalent complexity spectra and that the SYZ fibration naturally preserves these computational invariants while implementing the required geometric transformations. Our proof proceeds by first establishing a precise mathematical framework connecting quantum complexity with geometric structures, then demonstrating that the special Lagrangian torus fibration preserves computational complexity at both local and global levels, and finally proving that this preservation necessarily implies the geometric correspondences required by the SYZ conjecture. This approach not only resolves the conjecture but reveals deeper insights about the relationship between computation and geometry in string theory. We introduce new complexity-based invariants for studying mirror symmetry and demonstrate how our framework extends naturally to related geometric structures.We present a proof of the Strominger-Yau-Zaslow (SYZ) conjecture by demonstrating that mirror symmetry fundamentally represents an equivalence of computational structures between Calabi-Yau manifolds. Through development of a rigorous quantum complexity operator formalism, we show that mirror pairs must have equivalent complexity spectra and that the SYZ fibration naturally preserves these computational invariants while implementing the required geometric transformations. Our proof proceeds by first establishing a precise mathematical framework connecting quantum complexity with geometric structures, then demonstrating that the special Lagrangian torus fibration preserves computational complexity at both local and global levels, and finally proving that this preservation necessarily implies the geometric correspondences required by the SYZ conjecture. This approach not only resolves the conjecture but reveals deeper insights about the relationship between computation and geometry in string theory. We introduce new complexity-based invariants for studying mirror symmetry and demonstrate how our framework extends naturally to related geometric structures.
关 键 词:Mirror Symmetry Calabi-Yau Manifolds SYZ Conjecture Quantum Complexity Special Lagrangian Fibration
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3