De Sitter Space as a Computational Tool for Surfaces and Foliations  

在线阅读下载全文

作  者:Maciej Czarnecki Szymon Walczak 

机构地区:[1]Katedra Geometrii,WydziaiMatematyki i Informatyki,UniwersytetLodzki,Lodz,Poland [2]Katedra Metodyki Nauczania Matematyki,WydziaiMatematyki i Informatyki,UniwersytetLodzki,Lodz,Poland

出  处:《American Journal of Computational Mathematics》2013年第1期1-5,共5页美国计算数学期刊(英文)

摘  要:The set of all spheres and hyperplanes in the Euclidean space Rn+1 could be identified with the Sitter space Λn+1. All the conformal properties are invariant by the Lorentz form which is natural pseudo-Riemannian metric on Λn+1. We shall study behaviour of some surfaces and foliations as their families using computation in the de Sitter space.The set of all spheres and hyperplanes in the Euclidean space Rn+1 could be identified with the Sitter space Λn+1. All the conformal properties are invariant by the Lorentz form which is natural pseudo-Riemannian metric on Λn+1. We shall study behaviour of some surfaces and foliations as their families using computation in the de Sitter space.

关 键 词:De Sitter Space Folation Conformal Geometry 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象