The Peculiarity of Numerical Solving the Euler and Navier-Stokes Equations  

The Peculiarity of Numerical Solving the Euler and Navier-Stokes Equations

在线阅读下载全文

作  者:Ludmila Petrova 

机构地区:[1]Department of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia

出  处:《American Journal of Computational Mathematics》2014年第4期304-310,共7页美国计算数学期刊(英文)

摘  要:The analysis of integrability of the Euler and Navier-Stokes equations shows that these equations have the solutions of two types: 1) solutions that are defined on the tangent nonintegrable manifold and 2) solutions that are defined on integrable structures (that are realized discretely under the conditions related to some degrees of freedom). Since such solutions are defined on different spatial objects, they cannot be obtained by a continuous numerical simulation of derivatives. To obtain a complete solution of the Euler and Navier-Stokes equations by numerical simulation, it is necessary to use two different frames of reference.The analysis of integrability of the Euler and Navier-Stokes equations shows that these equations have the solutions of two types: 1) solutions that are defined on the tangent nonintegrable manifold and 2) solutions that are defined on integrable structures (that are realized discretely under the conditions related to some degrees of freedom). Since such solutions are defined on different spatial objects, they cannot be obtained by a continuous numerical simulation of derivatives. To obtain a complete solution of the Euler and Navier-Stokes equations by numerical simulation, it is necessary to use two different frames of reference.

关 键 词:Solutions of TWO Types Nonintegrable MANIFOLDS and INTEGRABLE Structures Discrete Transitions TWO Different Frames of Reference 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象