检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ludmila Petrova
机构地区:[1]Department of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia
出 处:《American Journal of Computational Mathematics》2014年第4期304-310,共7页美国计算数学期刊(英文)
摘 要:The analysis of integrability of the Euler and Navier-Stokes equations shows that these equations have the solutions of two types: 1) solutions that are defined on the tangent nonintegrable manifold and 2) solutions that are defined on integrable structures (that are realized discretely under the conditions related to some degrees of freedom). Since such solutions are defined on different spatial objects, they cannot be obtained by a continuous numerical simulation of derivatives. To obtain a complete solution of the Euler and Navier-Stokes equations by numerical simulation, it is necessary to use two different frames of reference.The analysis of integrability of the Euler and Navier-Stokes equations shows that these equations have the solutions of two types: 1) solutions that are defined on the tangent nonintegrable manifold and 2) solutions that are defined on integrable structures (that are realized discretely under the conditions related to some degrees of freedom). Since such solutions are defined on different spatial objects, they cannot be obtained by a continuous numerical simulation of derivatives. To obtain a complete solution of the Euler and Navier-Stokes equations by numerical simulation, it is necessary to use two different frames of reference.
关 键 词:Solutions of TWO Types Nonintegrable MANIFOLDS and INTEGRABLE Structures Discrete Transitions TWO Different Frames of Reference
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.59.186