An Accurate Numerical Integrator for the Solution of Black Scholes Financial Model Equation  

An Accurate Numerical Integrator for the Solution of Black Scholes Financial Model Equation

在线阅读下载全文

作  者:Iyakino P. Akpan Johnson O. Fatokun 

机构地区:[1]Department of Basic Science, College of Agriculture, Lafia, Nigeria [2]Department of Mathematical Science and Information Technology, Federal University, Dutsin-Ma, Nigeria

出  处:《American Journal of Computational Mathematics》2015年第3期283-290,共8页美国计算数学期刊(英文)

摘  要:In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.

关 键 词:BLACK Scholes EQUATION Partial Differential Equations (PDEs) Method of Lines (MOL) L-Stable Trapezoidal-Like INTEGRATOR 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象