检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Edward J. Kansa Edward J. Kansa(Convergent Solutions, Livermore, CA, USA)
机构地区:[1]Convergent Solutions, Livermore, CA, USA
出 处:《American Journal of Computational Mathematics》2023年第2期356-370,共15页美国计算数学期刊(英文)
摘 要:Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.
关 键 词:Continuously Differentiable Radial Basis Functions Global Maxima and Minima Solutions of Ill-Conditioned Linear Equations Block Gaussian Elimination Arbitrary Precision Arithmetic
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7