Revealing the Hidden Mathematical Beauties of the Cayley-Hamilton Method  

Revealing the Hidden Mathematical Beauties of the Cayley-Hamilton Method

在线阅读下载全文

作  者:Haiduke Sarafian Haiduke Sarafian(The Pennsylvania State University, University College, York, PA, USA)

机构地区:[1]The Pennsylvania State University, University College, York, PA, USA

出  处:《American Journal of Computational Mathematics》2024年第2期257-263,共7页美国计算数学期刊(英文)

摘  要:The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.

关 键 词:Cayley-Hamilton Method Matrix Inversion Linear Algebra Computer Algebra System MATHEMATICA 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象