检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Olaniyi S. Maliki Emmanuel I. Ugwu
机构地区:[1]Department of Industrial Mathematics and Applied Statistics, Ebonyi State University, Abakaliki, Nigeria [2]Department of Industrial Physics, Ebonyi State University, Abakaliki, Nigeria
出 处:《Applied Mathematics》2014年第10期1586-1593,共8页应用数学(英文)
摘 要:The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus.The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117