On <i>q</i>-Deformed Calculus in Quantum Geometry  

On <i>q</i>-Deformed Calculus in Quantum Geometry

在线阅读下载全文

作  者:Olaniyi S. Maliki Emmanuel I. Ugwu 

机构地区:[1]Department of Industrial Mathematics and Applied Statistics, Ebonyi State University, Abakaliki, Nigeria [2]Department of Industrial Physics, Ebonyi State University, Abakaliki, Nigeria

出  处:《Applied Mathematics》2014年第10期1586-1593,共8页应用数学(英文)

摘  要:The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus.The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus.

关 键 词:Quantum Geometry q-Numbers q-Factorials Q-CALCULUS 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象