Numerical Solution of Nonlinear Mixed Integral Equation with a Generalized Cauchy Kernel  

Numerical Solution of Nonlinear Mixed Integral Equation with a Generalized Cauchy Kernel

在线阅读下载全文

作  者:Fatheah Ahmed Hendi Manal Mohamed Al-Qarni 

机构地区:[1]Department of Mathematics, Faculty of Science, King Abdul Aziz University, Jeddah, KSA [2]Department of Mathematics, Faculty of Science, King Khalid University, Abha, KSA

出  处:《Applied Mathematics》2017年第2期209-214,共6页应用数学(英文)

摘  要:In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturbation method (LHPM)). Here we consider the V-FIE with Cauchy kernel. Solved examples illustrate that the proposed strategy is powerful, effective and very simple.In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturbation method (LHPM)). Here we consider the V-FIE with Cauchy kernel. Solved examples illustrate that the proposed strategy is powerful, effective and very simple.

关 键 词:Singular Integral Equation Linear and NONLINEAR V-FIE HOMOTOPY Perturbation Method (HPM) CAUCHY Kernel 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象