Orthogonal Series Estimation of Nonparametric Regression Measurement Error Models with Validation Data  

Orthogonal Series Estimation of Nonparametric Regression Measurement Error Models with Validation Data

在线阅读下载全文

作  者:Zanhua Yin 

机构地区:[1]College of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China

出  处:《Applied Mathematics》2017年第12期1820-1831,共12页应用数学(英文)

摘  要:In this article we study the estimation method of nonparametric regression measurement error model based on a validation data. The estimation procedures are based on orthogonal series estimation and truncated series approximation methods without specifying any structure equation and the distribution assumption. The convergence rates of the proposed estimator are derived. By example and through simulation, the method is robust against the misspecification of a measurement error model.In this article we study the estimation method of nonparametric regression measurement error model based on a validation data. The estimation procedures are based on orthogonal series estimation and truncated series approximation methods without specifying any structure equation and the distribution assumption. The convergence rates of the proposed estimator are derived. By example and through simulation, the method is robust against the misspecification of a measurement error model.

关 键 词:ILL-POSED INVERSE Problems Measurement ERRORS NONPARAMETRIC Regression ORTHOGONAL Series VALIDATION Data 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象