Variation of Parameters for Causal Operator Differential Equations  

Variation of Parameters for Causal Operator Differential Equations

在线阅读下载全文

作  者:Reza R. Ahangar 

机构地区:[1]Mathematics Department, Texas A & M University Kingsville, Kingsville, USA

出  处:《Applied Mathematics》2017年第12期1883-1902,共20页应用数学(英文)

摘  要:The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a nonlinear operator differential equation where its changes depends on the causal operator T, and semigroup of operator A(t), and all initial parameters (t0, x0) . The initial information is described x(t)=φ(t) for almost all t ≤t0 and φ(t0) =φ0. We will study the nonlinear variation of parameters (NVP) for this type of nonanticipating operator differential equations and develop Alekseev type of NVP.The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a nonlinear operator differential equation where its changes depends on the causal operator T, and semigroup of operator A(t), and all initial parameters (t0, x0) . The initial information is described x(t)=φ(t) for almost all t ≤t0 and φ(t0) =φ0. We will study the nonlinear variation of parameters (NVP) for this type of nonanticipating operator differential equations and develop Alekseev type of NVP.

关 键 词:Nonlinear OPERATOR Differential Equations (NODE) Variation of Parameters Nonanticipating (Causal) ALEKSEEV THEOREM 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象