Numerical Solution of Kortweg-de Vries Equation  

Numerical Solution of Kortweg-de Vries Equation

在线阅读下载全文

作  者:Fakhirah Alotaibi M. S. Ismail 

机构地区:[1]Dept. of Math, King Abdulaziz University, Jeddah, Saudi Arabia

出  处:《Applied Mathematics》2020年第4期344-362,共19页应用数学(英文)

摘  要:In this paper, we are going to derive numerical methods for solving the KdV equation using Pade approximation for space direction, trapezoidal and implicit mid-point rule in the time direction. The schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities will be used to display the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be conducted. The numerical results showed, interaction behavior is elastic and the conserved quantities are conserved which is a good indication of the reliability of the schemes under consideration.In this paper, we are going to derive numerical methods for solving the KdV equation using Pade approximation for space direction, trapezoidal and implicit mid-point rule in the time direction. The schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities will be used to display the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be conducted. The numerical results showed, interaction behavior is elastic and the conserved quantities are conserved which is a good indication of the reliability of the schemes under consideration.

关 键 词:KDV SOLITON PADE Approximation Numerical SCHEMES Interaction of SOLITONS 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象