机构地区:[1]Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana [2]Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana [3]Department of Mathematics, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
出 处:《Applied Mathematics》2020年第7期712-737,共26页应用数学(英文)
摘 要:Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style="font-family:Verdana;">. Generally, humans are infected with listeriosis after eating contaminated food. Listeriosis mostly affects people with weakened immune systems, pregnant women and newborns. In this paper, a model describing the dynamics o</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">f Listeriosis is developed and analysed using ordinary differential equations. The model was analysed both quantitatively and qualitatively for its local and global stability, basic reproductive number and parameter contributions to the basic reproductive number to understand the impact of each parameter on the disease spread. The Listeriosis model has been extended to include time dependent control variables such as treatment of both humans and animals, vaccination and education of humans. Pontryagin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s Maximum Principle was introduced to obtain the best optimal control strategies required for curbing Listeriosis infections. Numerical simulation was performed and the results displayed graphically and discussed. Cost effectiveness analysis was conducted using the intervention averted ratio (IAR) concepts and it was revealed that the most effective intervention strategy is the treatment of infect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> humans and animals.Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style="font-family:Verdana;">. Generally, humans are infected with listeriosis after eating contaminated food. Listeriosis mostly affects people with weakened immune systems, pregnant women and newborns. In this paper, a model describing the dynamics o</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">f Listeriosis is developed and analysed using ordinary differential equations. The model was analysed both quantitatively and qualitatively for its local and global stability, basic reproductive number and parameter contributions to the basic reproductive number to understand the impact of each parameter on the disease spread. The Listeriosis model has been extended to include time dependent control variables such as treatment of both humans and animals, vaccination and education of humans. Pontryagin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s Maximum Principle was introduced to obtain the best optimal control strategies required for curbing Listeriosis infections. Numerical simulation was performed and the results displayed graphically and discussed. Cost effectiveness analysis was conducted using the intervention averted ratio (IAR) concepts and it was revealed that the most effective intervention strategy is the treatment of infect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> humans and animals.
关 键 词:Listeriosis Model Basic Reproductive Number Optimal Control Pontryagin’s Maximum Principle Cost Effectiveness
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...