检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dev Chandra Shrestha Saraswati Acharya Dil Bahadur Gurung Dev Chandra Shrestha;Saraswati Acharya;Dil Bahadur Gurung(Department of Mathematics, School of Science, Kathmandu University, Dhulikhel, Nepal)
机构地区:[1]Department of Mathematics, School of Science, Kathmandu University, Dhulikhel, Nepal
出 处:《Applied Mathematics》2020年第8期753-770,共18页应用数学(英文)
摘 要:Metabolisms play a vital role in thermoregulation in the human body. The metabolic rate varies with the activity levels and has different behaviors in nature depending on the physical activities of the person. During the activity, metabolic rate increases rapidly at the beginning and then increases slowly to become almost constant after a certain time. So, its behavior is as logistics in nature. The high metabolic rate during activity causes the increase of body core temperature up to 39˚C <a href="#ref1">[1]</a> <a href="#ref2">[2]</a>. The logistic model of metabolic rate is used to re-model Pennes’ bioheat equation for the study of temperature distribution in three layered human dermal parts during carpentering, swimming and marathon. The finite element method is used to obtain the solution of the model equation. The results demonstrate that there is a significant change in tissue temperature due to sweating and ambient temperature variations.Metabolisms play a vital role in thermoregulation in the human body. The metabolic rate varies with the activity levels and has different behaviors in nature depending on the physical activities of the person. During the activity, metabolic rate increases rapidly at the beginning and then increases slowly to become almost constant after a certain time. So, its behavior is as logistics in nature. The high metabolic rate during activity causes the increase of body core temperature up to 39˚C <a href="#ref1">[1]</a> <a href="#ref2">[2]</a>. The logistic model of metabolic rate is used to re-model Pennes’ bioheat equation for the study of temperature distribution in three layered human dermal parts during carpentering, swimming and marathon. The finite element method is used to obtain the solution of the model equation. The results demonstrate that there is a significant change in tissue temperature due to sweating and ambient temperature variations.
关 键 词:Pennes’ Bio-Heat Equation Metabolic Rate Finite Element Method Physical Activities THERMOREGULATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49