检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoling Wang Xiaoling Wang(School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China)
机构地区:[1]School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China
出 处:《Applied Mathematics》2021年第6期471-476,共6页应用数学(英文)
摘 要:For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>.For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38