检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gene Whyman Gene Whyman(Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel)
机构地区:[1]Physics Department, Faculty of Natural Sciences, Ariel University, Ariel, Israel
出 处:《Applied Mathematics》2021年第7期576-586,共11页应用数学(英文)
摘 要:The Newcomb-Benford law, which describes the uneven distribution of the frequencies of digits in data sets, is by its nature probabilistic. Therefore, the main goal of this work was to derive formulas for the permissible deviations of the above frequencies (confidence intervals). For this, a previously developed method was used, which represents an alternative to the traditional approach. The alternative formula expressing the Newcomb-Benford law is re-derived. As shown in general form, it is numerically equivalent to the original Benford formula. The obtained formulas for confidence intervals for Benford’s law are shown to be useful for checking arrays of numerical data. Consequences for numeral systems with different bases are analyzed. The alternative expression for the frequencies of digits at the second decimal place is deduced together with the corresponding deviation intervals. In general, in this approach, all the presented results are a consequence of the positionality property of digital systems such as decimal, binary, etc.The Newcomb-Benford law, which describes the uneven distribution of the frequencies of digits in data sets, is by its nature probabilistic. Therefore, the main goal of this work was to derive formulas for the permissible deviations of the above frequencies (confidence intervals). For this, a previously developed method was used, which represents an alternative to the traditional approach. The alternative formula expressing the Newcomb-Benford law is re-derived. As shown in general form, it is numerically equivalent to the original Benford formula. The obtained formulas for confidence intervals for Benford’s law are shown to be useful for checking arrays of numerical data. Consequences for numeral systems with different bases are analyzed. The alternative expression for the frequencies of digits at the second decimal place is deduced together with the corresponding deviation intervals. In general, in this approach, all the presented results are a consequence of the positionality property of digital systems such as decimal, binary, etc.
关 键 词:Benford’s Law Confidence Intervals in Benford’s Law Alternative Expression of Benford’s Law Benford’s Law for Different Numeral Systems Frequencies of Digits at the Second Decimal Place
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145