检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Cheng’ao Li Junliang Lu Cheng’ao Li;Junliang Lu(School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China)
机构地区:[1]School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China
出 处:《Applied Mathematics》2022年第4期356-375,共20页应用数学(英文)
摘 要:In the paper, we study a kind of time-delayed novel coronavirus pneumonia dynamical model with vaccination. This model considers that people are vaccinated, and the human immune system has a series of processes, which need a certain time. We first obtain the disease-free equilibrium and the basic reproduction number R<sub>0</sub>, and the system has a unique endemic equilibrium when R<sub>0</sub> > 1. Then we discuss the stability of the disease-free equilibrium and the endemic equilibrium with different delays τ. For τ = 0, using the Lyapunov function approach, we obtained the stability of disease-free equilibrium and the endemic equilibrium, respectively. For any delay τ ≠ 0, using the Routh-Hurwitz Criteria, we obtained that the disease-free equilibrium is locally asymptotically stable. We also find the critical value τ<sub>0</sub> at the endemic equilibrium, and obtain the condition that the system has a Hopf bifurcation at the endemic equilibrium. Finally, with the suitable choices of the parameters, some numerical simulations are presented in order to verify the effectiveness of the obtained theoretical results.In the paper, we study a kind of time-delayed novel coronavirus pneumonia dynamical model with vaccination. This model considers that people are vaccinated, and the human immune system has a series of processes, which need a certain time. We first obtain the disease-free equilibrium and the basic reproduction number R<sub>0</sub>, and the system has a unique endemic equilibrium when R<sub>0</sub> > 1. Then we discuss the stability of the disease-free equilibrium and the endemic equilibrium with different delays τ. For τ = 0, using the Lyapunov function approach, we obtained the stability of disease-free equilibrium and the endemic equilibrium, respectively. For any delay τ ≠ 0, using the Routh-Hurwitz Criteria, we obtained that the disease-free equilibrium is locally asymptotically stable. We also find the critical value τ<sub>0</sub> at the endemic equilibrium, and obtain the condition that the system has a Hopf bifurcation at the endemic equilibrium. Finally, with the suitable choices of the parameters, some numerical simulations are presented in order to verify the effectiveness of the obtained theoretical results.
关 键 词:SVIQR Epidemic Model the Time-Delayed COVID-19 Dynamical Model Lyapunov Functional Hopf Bifurcation STABILITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222