检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Michael Grabinski Galiya Klinkova Michael Grabinski;Galiya Klinkova(Department of Business and Economics, Neu-Ulm University, Neu-Ulm, Germany)
机构地区:[1]Department of Business and Economics, Neu-Ulm University, Neu-Ulm, Germany
出 处:《Applied Mathematics》2023年第5期279-289,共11页应用数学(英文)
摘 要:It is well known that an integral is nothing but a continuous form of a sum. Is it possible to do the same thing with a product? The answer is yes and done for the first time in this publication. The new operator is called inteduct. As an integral is a proper tool to calculate the arithmetic mean of a function, the inteduct gives the geometric mean of a function. This defines a new branch of mathematics. Most applications may lay way ahead. Only some are discussed here. One is applying the inteduct to probability theory. There it is possible e.g., to determine a function for a life expectation rather than just a numerical value. Another application is to distinguish chaos from randomness within numerically given values. At least for the logistic map there exists a direct connection between Lyapunov exponent and inteduct. To distinguish between chaos and randomness is particularly important in finance. While randomness implies ergodicity, chaos is non-ergodic. And many fundamental financial theories from portfolio theory to market efficiency require ergodicity.It is well known that an integral is nothing but a continuous form of a sum. Is it possible to do the same thing with a product? The answer is yes and done for the first time in this publication. The new operator is called inteduct. As an integral is a proper tool to calculate the arithmetic mean of a function, the inteduct gives the geometric mean of a function. This defines a new branch of mathematics. Most applications may lay way ahead. Only some are discussed here. One is applying the inteduct to probability theory. There it is possible e.g., to determine a function for a life expectation rather than just a numerical value. Another application is to distinguish chaos from randomness within numerically given values. At least for the logistic map there exists a direct connection between Lyapunov exponent and inteduct. To distinguish between chaos and randomness is particularly important in finance. While randomness implies ergodicity, chaos is non-ergodic. And many fundamental financial theories from portfolio theory to market efficiency require ergodicity.
关 键 词:Geometric Mean Chaos FINANCE ERGODICITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.186.192