Like a Sum Is Generalized into an Integral, a Product May Be Generalized into an Inteduct  

Like a Sum Is Generalized into an Integral, a Product May Be Generalized into an Inteduct

在线阅读下载全文

作  者:Michael Grabinski Galiya Klinkova Michael Grabinski;Galiya Klinkova(Department of Business and Economics, Neu-Ulm University, Neu-Ulm, Germany)

机构地区:[1]Department of Business and Economics, Neu-Ulm University, Neu-Ulm, Germany

出  处:《Applied Mathematics》2023年第5期279-289,共11页应用数学(英文)

摘  要:It is well known that an integral is nothing but a continuous form of a sum. Is it possible to do the same thing with a product? The answer is yes and done for the first time in this publication. The new operator is called inteduct. As an integral is a proper tool to calculate the arithmetic mean of a function, the inteduct gives the geometric mean of a function. This defines a new branch of mathematics. Most applications may lay way ahead. Only some are discussed here. One is applying the inteduct to probability theory. There it is possible e.g., to determine a function for a life expectation rather than just a numerical value. Another application is to distinguish chaos from randomness within numerically given values. At least for the logistic map there exists a direct connection between Lyapunov exponent and inteduct. To distinguish between chaos and randomness is particularly important in finance. While randomness implies ergodicity, chaos is non-ergodic. And many fundamental financial theories from portfolio theory to market efficiency require ergodicity.It is well known that an integral is nothing but a continuous form of a sum. Is it possible to do the same thing with a product? The answer is yes and done for the first time in this publication. The new operator is called inteduct. As an integral is a proper tool to calculate the arithmetic mean of a function, the inteduct gives the geometric mean of a function. This defines a new branch of mathematics. Most applications may lay way ahead. Only some are discussed here. One is applying the inteduct to probability theory. There it is possible e.g., to determine a function for a life expectation rather than just a numerical value. Another application is to distinguish chaos from randomness within numerically given values. At least for the logistic map there exists a direct connection between Lyapunov exponent and inteduct. To distinguish between chaos and randomness is particularly important in finance. While randomness implies ergodicity, chaos is non-ergodic. And many fundamental financial theories from portfolio theory to market efficiency require ergodicity.

关 键 词:Geometric Mean Chaos FINANCE ERGODICITY 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象