Some Implications of the Gessel Identity  

Some Implications of the Gessel Identity

在线阅读下载全文

作  者:Claire Levaillant Claire Levaillant(Department of Mathematics, University of Southern California, Los Angeles, CA, USA)

机构地区:[1]Department of Mathematics, University of Southern California, Los Angeles, CA, USA

出  处:《Applied Mathematics》2023年第9期545-579,共35页应用数学(英文)

摘  要:We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.

关 键 词:Convolutions Involving Bernoulli Numbers Truncated Convolutions Involving Bernoulli Numbers CONGRUENCES Binomial and Multinomial Convolutions of Divided Bernoulli Numbers Multiple Harmonic Sums Generalized Harmonic Numbers Miki Identity Gessel Identity Sums of Powers of Integers Weighted by Powers of the Fermat Quotients Generalization of Kummer’s Congruences Generalizations of Friedmann-Tamarkine Lehmer Ernvall-Metsänkyla’s Congruences p-Adic Numbers Weighted Sums of Powers of Integers 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象