检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mohammad Jarrar Mohammad Jarrar(Department of Applied Mathematics, Palestine Technical University-Kadoorie, Tulkarem, Palestine)
机构地区:[1]Department of Applied Mathematics, Palestine Technical University-Kadoorie, Tulkarem, Palestine
出 处:《Applied Mathematics》2024年第12期840-847,共8页应用数学(英文)
摘 要:This paper investigates the connections between ring theory, module theory, and graph theory through the graph G(R)of a ring R. We establish that vertices of G(R)correspond to modules, with edges defined by the vanishing of their tensor product. Key results include the graph’s connectivity, a diameter of at most 3, and a girth of at most 7 when cycles are present. We show that the set of modules S(R)is empty if and only if R is a field, and that for semisimple rings, the diameter is at most 2. The paper also discusses module isomorphisms over subrings and localization, as well as the inclusion of G(T)within G(R)for a quotient ring T, highlighting that the reverse inclusion is not guaranteed. Finally, we provide an example illustrating that a non-finitely generated module M does not imply M⊗M=0. These findings deepen our understanding of the interplay among rings, modules, and graphs.This paper investigates the connections between ring theory, module theory, and graph theory through the graph G(R)of a ring R. We establish that vertices of G(R)correspond to modules, with edges defined by the vanishing of their tensor product. Key results include the graph’s connectivity, a diameter of at most 3, and a girth of at most 7 when cycles are present. We show that the set of modules S(R)is empty if and only if R is a field, and that for semisimple rings, the diameter is at most 2. The paper also discusses module isomorphisms over subrings and localization, as well as the inclusion of G(T)within G(R)for a quotient ring T, highlighting that the reverse inclusion is not guaranteed. Finally, we provide an example illustrating that a non-finitely generated module M does not imply M⊗M=0. These findings deepen our understanding of the interplay among rings, modules, and graphs.
关 键 词:Graph Theory Commutative Ring Tensor Product CONNECTED DIAMETER Semisimple Ring
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.191