检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:R. Benschwartz P. Sakthivel R. Benschwartz;P. Sakthivel(Department of Electronics and Communication Engineering, College of Engineering Guindy, Anna University, Chennai, India)
出 处:《Circuits and Systems》2016年第6期956-970,共15页电路与系统(英文)
摘 要:Technology development and continuous down scaling in CMOS fabrication makes Mixed Signal Integrated Circuits (MSIC) more vulnerable to process variation. This paper presents a well defined novel design methodology for process variability aware design by incorporating the major challenge of statistical circuit performance relating the device and circuit level variation in an accurate and efficient manner to improve the reliability, robustness and stability of the circuit. The device sensitive parameters are identified and accurately quantified by continuous realistic assessments using statistical methods. The modularity of the methodology can be validated by the output performance obtained from the gain and phase response of OTA which is highly stable when subjected to worst case process variation scenario. In the proposed optimization, the circuit is strengthened by fixing the optimum aspect ratio without adding any additional compensation devices complicating the circuit resulting in low power consumption of only 0.116 mW in standard CMOS 0.18 μm technology with 1.8 V power supply.Technology development and continuous down scaling in CMOS fabrication makes Mixed Signal Integrated Circuits (MSIC) more vulnerable to process variation. This paper presents a well defined novel design methodology for process variability aware design by incorporating the major challenge of statistical circuit performance relating the device and circuit level variation in an accurate and efficient manner to improve the reliability, robustness and stability of the circuit. The device sensitive parameters are identified and accurately quantified by continuous realistic assessments using statistical methods. The modularity of the methodology can be validated by the output performance obtained from the gain and phase response of OTA which is highly stable when subjected to worst case process variation scenario. In the proposed optimization, the circuit is strengthened by fixing the optimum aspect ratio without adding any additional compensation devices complicating the circuit resulting in low power consumption of only 0.116 mW in standard CMOS 0.18 μm technology with 1.8 V power supply.
关 键 词:MSIC Process Voltage Temperature Operational Transconductance Amplifier Monte Carlo Simulation
分 类 号:TN7[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30