Deployment of Effective Testing Methodology in Automotive Software Development  

Deployment of Effective Testing Methodology in Automotive Software Development

在线阅读下载全文

作  者:P. Sivakumar B. Vinod R. S. Sandhya Devi R. Divya P. Sivakumar;B. Vinod;R. S. Sandhya Devi;R. Divya(Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, India;Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, India)

机构地区:[1]Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, India [2]Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, India

出  处:《Circuits and Systems》2016年第9期2568-2577,共10页电路与系统(英文)

摘  要:Software development in automotive industry has bestowed greater comforts and conveniences to mankind. A remarkable progress in this field often faces a setback due to minor defects in the software. So there is recurring need for standardization and implementation of testing strategies. But the process of creation of test scripts to check if the software created complies with its specifications and requirements is both time- and resource-consuming. Generating a short but effective test suite usually requires a lot of manual work and expert knowledge. Patronizing research work in this field is the need of the hour. This paper solves the problem by using Model-Based Testing where test harness and evaluation are performed economically through automation. Simulink Design Verifier and Reactis are the tools used to carry out this purpose in Adaptive Front Light System. The resulting outputs obtained from Simulink Design Verifier and Reactis using Model-Based Testing prove that short test suites can be generated for the model where full model coverage can be achieved easily through automation. The outputs of these test cases when compared with the expected outputs confirm that the model developed is working as per the requirements.Software development in automotive industry has bestowed greater comforts and conveniences to mankind. A remarkable progress in this field often faces a setback due to minor defects in the software. So there is recurring need for standardization and implementation of testing strategies. But the process of creation of test scripts to check if the software created complies with its specifications and requirements is both time- and resource-consuming. Generating a short but effective test suite usually requires a lot of manual work and expert knowledge. Patronizing research work in this field is the need of the hour. This paper solves the problem by using Model-Based Testing where test harness and evaluation are performed economically through automation. Simulink Design Verifier and Reactis are the tools used to carry out this purpose in Adaptive Front Light System. The resulting outputs obtained from Simulink Design Verifier and Reactis using Model-Based Testing prove that short test suites can be generated for the model where full model coverage can be achieved easily through automation. The outputs of these test cases when compared with the expected outputs confirm that the model developed is working as per the requirements.

关 键 词:Model Advisor Model-Based Testing Reactis Simulink Design Verifier 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象