Evaluating the Performance of Fault-Tolerant S2A vs. In-Loop Controller Models for Ethernet-Based NCS  

Evaluating the Performance of Fault-Tolerant S2A vs. In-Loop Controller Models for Ethernet-Based NCS

在线阅读下载全文

作  者:Eslam Moustafa Hassan Halawa Ramez Daoud Hassanein Amer 

机构地区:[1]Electronics Engineering Department, American University in Cairo, Cairo, Egypt

出  处:《Intelligent Control and Automation》2014年第2期81-90,共10页智能控制与自动化(英文)

摘  要:Two different controller-level fault-tolerant models for Ethernet-based Networked Control Systems (NCSs) are presented in this paper. These models are studied using unmodified Fast and Gigabit Ethernet. The first is an in-loop controller model while the second is a direct Sensor to Actuator (S2A) model. OMNeT++ simulations showed the success of both models in meeting system end-to-end delay and strict zero packet loss (with no over-delayed packets) requirements. It was shown in the literature that the S2A model has a lower end-to-end delay than the in-loop controller model. It will be shown here that, on the one hand, the in-loop fault-tolerant model performs better in terms of less total end-to-end delay than the S2A model in the fault-free situation. While, on the other hand, in the scenario with the failed controller(s), the S2A model was shown to have less total end-to-end delay.Two different controller-level fault-tolerant models for Ethernet-based Networked Control Systems (NCSs) are presented in this paper. These models are studied using unmodified Fast and Gigabit Ethernet. The first is an in-loop controller model while the second is a direct Sensor to Actuator (S2A) model. OMNeT++ simulations showed the success of both models in meeting system end-to-end delay and strict zero packet loss (with no over-delayed packets) requirements. It was shown in the literature that the S2A model has a lower end-to-end delay than the in-loop controller model. It will be shown here that, on the one hand, the in-loop fault-tolerant model performs better in terms of less total end-to-end delay than the S2A model in the fault-free situation. While, on the other hand, in the scenario with the failed controller(s), the S2A model was shown to have less total end-to-end delay.

关 键 词:NETWORKED Control Systems ETHERNET OMNET++ Sensor Actuator Networks FAULT-TOLERANCE 

分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象