检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Abhas Mitra
机构地区:[1]Theoretical Astrophysics Section, Bhabha Atomic Research Centre, Mumbai, India
出 处:《International Journal of Astronomy and Astrophysics》2012年第3期174-179,共6页天文学与天体物理学国际期刊(英文)
摘 要:The total spacetime manifold for a Schwarzschild black hole (BH) is believed to be described by the Kruskal coordi-nates and , where r and t are the conventional Schwarzschild radial and time coordinates re-spectively. The relationship between r and t for a test particle moving along a radial or non-radial geodesic is well known. Similarly, the expression for the vacuum Schwarzschild derivative for a geodesic, in terms of the constants of motion, is well known. However, the same is not true for the Kruskal coordinates;and, we derive here the expression for the Kruskal derivative for a radial geodesic in terms of the constants of motion. In particular, it is seen that the value of ) is regular on the Event Horizon of the Black Hole. The regular nature of the Kruskal derivative is in sharp contrast with the Schwarzschild derivative, , at the Event Horizon. We also explicitly obtain the value of the Kruskal coordinates on the Event Horizon as a function of the constant of motion for a test particle on a radial geodesic. The physical implications of this result will be discussed elsewhere.The total spacetime manifold for a Schwarzschild black hole (BH) is believed to be described by the Kruskal coordi-nates and , where r and t are the conventional Schwarzschild radial and time coordinates re-spectively. The relationship between r and t for a test particle moving along a radial or non-radial geodesic is well known. Similarly, the expression for the vacuum Schwarzschild derivative for a geodesic, in terms of the constants of motion, is well known. However, the same is not true for the Kruskal coordinates;and, we derive here the expression for the Kruskal derivative for a radial geodesic in terms of the constants of motion. In particular, it is seen that the value of ) is regular on the Event Horizon of the Black Hole. The regular nature of the Kruskal derivative is in sharp contrast with the Schwarzschild derivative, , at the Event Horizon. We also explicitly obtain the value of the Kruskal coordinates on the Event Horizon as a function of the constant of motion for a test particle on a radial geodesic. The physical implications of this result will be discussed elsewhere.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222