Application of the Queuing Theory in Characterizing and Optimizing the Passenger Flow at the Airport Security  被引量:5

Application of the Queuing Theory in Characterizing and Optimizing the Passenger Flow at the Airport Security

在线阅读下载全文

作  者:Mengjiao Wang 

机构地区:[1]Economics and Mathematics, Faculty of Social Science and Law, University of Bristol, Bristol, UK

出  处:《Journal of Applied Mathematics and Physics》2017年第9期1620-1628,共9页应用数学与应用物理(英文)

摘  要:This paper presents mathematics models that describe and optimize the passenger flow at the airport security checkpoints by applying the queuing theory. Firstly, a Poisson process is used to estimate the flow of passengers waiting for going through the security. Then, the Poisson distribution is combined with a multiple M/M/s model. Following that, an arrival model (passengers’ arriving at the checkpoints preparing for security examination and departure) with Gumbel extreme value estimation is described that predicts the busiest time in the busiest airport. Real case data collected from several major airports worldwide is used for creating a hybrid Poisson model to generate the simulation of passenger volume. At last, Markov Chain theory is applied to the analysis to randomly simulate the flow of enplaned passengers again, and the results of these two simulations are compared and discussed, revealing that the hybrid Poisson model is the more accurate one. After successfully characterizing the passenger flow mathematically, two methods for optimizing the passenger flow are then provided in two different respects: one is bypassing passengers and creating an express pass;while the other one promotes Pre-Check service application.This paper presents mathematics models that describe and optimize the passenger flow at the airport security checkpoints by applying the queuing theory. Firstly, a Poisson process is used to estimate the flow of passengers waiting for going through the security. Then, the Poisson distribution is combined with a multiple M/M/s model. Following that, an arrival model (passengers’ arriving at the checkpoints preparing for security examination and departure) with Gumbel extreme value estimation is described that predicts the busiest time in the busiest airport. Real case data collected from several major airports worldwide is used for creating a hybrid Poisson model to generate the simulation of passenger volume. At last, Markov Chain theory is applied to the analysis to randomly simulate the flow of enplaned passengers again, and the results of these two simulations are compared and discussed, revealing that the hybrid Poisson model is the more accurate one. After successfully characterizing the passenger flow mathematically, two methods for optimizing the passenger flow are then provided in two different respects: one is bypassing passengers and creating an express pass;while the other one promotes Pre-Check service application.

关 键 词:QUEUING Theory POISSON Process Gumbel EXTREME VALUE Estimation Hybrid POISSON Model MARKOV CHAIN 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象