On the Solution of One-Dimensional Ising Models  

On the Solution of One-Dimensional Ising Models

在线阅读下载全文

作  者:Yu. N. Kharchenko 

机构地区:[1]Institute for Applied Mathematics, Far Eastern Branch of Russian Academy Sciences, Vladivostok, Russia

出  处:《Journal of Applied Mathematics and Physics》2018年第5期960-967,共8页应用数学与应用物理(英文)

摘  要:In this paper it is shown that the thermodynamic limit of the partition function of the statistical models under consideration on a one-dimensional lattice with an arbitrary finite number of interacting neighbors is expressed in terms of the principal eigenvalue of a matrix of finite size. The high sparseness of these matrices for any number of interactions makes it possible to perform an effective numerical analysis of the macro characteristics of these models.In this paper it is shown that the thermodynamic limit of the partition function of the statistical models under consideration on a one-dimensional lattice with an arbitrary finite number of interacting neighbors is expressed in terms of the principal eigenvalue of a matrix of finite size. The high sparseness of these matrices for any number of interactions makes it possible to perform an effective numerical analysis of the macro characteristics of these models.

关 键 词:ISING Model Transfer Matrix Statistical SUM Free Energy SINGULAR CURVES Phase TRANSITIONS 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象