Linear Stability and Nonlinear Analysis of an Extended Optimal Velocity Model Considering the Speed Limit  被引量:1

Linear Stability and Nonlinear Analysis of an Extended Optimal Velocity Model Considering the Speed Limit

在线阅读下载全文

作  者:Guangzhu He Cuncai Hua 

机构地区:[1]Department of Mathematics, Yunnan Normal University, Kunming, China

出  处:《Journal of Applied Mathematics and Physics》2020年第3期507-518,共12页应用数学与应用物理(英文)

摘  要:In this paper, an extended car-following model is proposed based on an optimal velocity model (OVM), which takes the speed limit into consideration. The model is analyzed by using the linear stability theory and nonlinear analysis method. The linear stability condition shows that the speed limit can enlarge the stable region of traffic flow. By applying the reductive perturbation method, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are derived to describe the traffic flow near the critical point. Furthermore, the relation between TDGL and mKdV equations is also given. It is clarified that the speed limit is essentially equivalent to the parameter adjusting of the driver’s sensitivity.In this paper, an extended car-following model is proposed based on an optimal velocity model (OVM), which takes the speed limit into consideration. The model is analyzed by using the linear stability theory and nonlinear analysis method. The linear stability condition shows that the speed limit can enlarge the stable region of traffic flow. By applying the reductive perturbation method, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are derived to describe the traffic flow near the critical point. Furthermore, the relation between TDGL and mKdV equations is also given. It is clarified that the speed limit is essentially equivalent to the parameter adjusting of the driver’s sensitivity.

关 键 词:Optimal VELOCITY Model (OVM) SPEED LIMIT TDGL EQUATION MKDV EQUATION 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象