The Normalized Laplacians on Both Two Iterated Constructions Associated with Graph and Their Applications  

The Normalized Laplacians on Both Two Iterated Constructions Associated with Graph and Their Applications

在线阅读下载全文

作  者:Chang Liu Yingui Pan Jianping Li Li Dai 

机构地区:[1]College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China

出  处:《Journal of Applied Mathematics and Physics》2020年第5期838-860,共23页应用数学与应用物理(英文)

摘  要:Given a simple connected graph G, we consider two iterated constructions associated with G: Fk (G) and Rk (G) . In this paper, we completely obtain the normalized Laplacian spectrum of Fk (G) and Rk (G) , with k ≥2, respectively. As applications, we derive the closed-formula of the multiplicative degree-Kirchhoff index, the Kemeny’s constant, and the number of spanning trees of Fk?(G)? , Rk?(G) , r-iterative graph ,Frk?(G)? and r-iterative graph , where k?≥2 and r?≥1 . Our results extend those main results proposed by Pan et al. (2018), and we provide a method to characterize the normalized Laplacian spectrum of iteratively constructed complex graphs.Given a simple connected graph G, we consider two iterated constructions associated with G: Fk (G) and Rk (G) . In this paper, we completely obtain the normalized Laplacian spectrum of Fk (G) and Rk (G) , with k ≥2, respectively. As applications, we derive the closed-formula of the multiplicative degree-Kirchhoff index, the Kemeny’s constant, and the number of spanning trees of Fk?(G)? , Rk?(G) , r-iterative graph ,Frk?(G)? and r-iterative graph , where k?≥2 and r?≥1 . Our results extend those main results proposed by Pan et al. (2018), and we provide a method to characterize the normalized Laplacian spectrum of iteratively constructed complex graphs.

关 键 词:Normalized LAPLACIAN MULTIPLICATIVE Degree-Kirchhoff Index Kemeny’s Con-stant SPANNING Tree 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象