The Quantum Condition That Should Have Been Assumed by Bohr When Deriving the Energy Levels of a Hydrogen Atom  被引量:2

The Quantum Condition That Should Have Been Assumed by Bohr When Deriving the Energy Levels of a Hydrogen Atom

在线阅读下载全文

作  者:Koshun Suto Koshun Suto(Chudaiji Buddhist Temple, Isesaki, Japan)

机构地区:[1]Chudaiji Buddhist Temple, Isesaki, Japan

出  处:《Journal of Applied Mathematics and Physics》2021年第6期1230-1244,共15页应用数学与应用物理(英文)

摘  要:Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Therefore, Bohr’s quantum condition was accepted by physicists. However, the energy levels predicted by the eventually completed quantum mechanics do not match perfectly with the predictions of Bohr. For this reason, it cannot be said that Bohr’s quantum condition is a perfectly correct assumption. Since the mass of an electron which moves inside a hydrogen atom varies, Bohr’s quantum condition must be revised. However, the newly derived relativistic quantum condition is too complex to be assumed at the beginning. The velocity of an electron in a hydrogen atom is known as the Bohr velocity. This velocity can be derived from the formula for energy levels derived by Bohr. The velocity <em>v </em>of an electron including the principal quantum number <em>n</em> is given by <em>αc</em>/<em>n</em>. This paper elucidates the fact that this formula is built into Bohr’s quantum condition. It is also concluded in this paper that it is precisely this velocity formula that is the quantum condition that should have been assumed in the first place by Bohr. From Bohr’s quantum condition, it is impossible to derive the relativistic energy levels of a hydrogen atom, but they can be derived from the new quantum condition. This paper proposes raising the status of the previously-known Bohr velocity formula.Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Therefore, Bohr’s quantum condition was accepted by physicists. However, the energy levels predicted by the eventually completed quantum mechanics do not match perfectly with the predictions of Bohr. For this reason, it cannot be said that Bohr’s quantum condition is a perfectly correct assumption. Since the mass of an electron which moves inside a hydrogen atom varies, Bohr’s quantum condition must be revised. However, the newly derived relativistic quantum condition is too complex to be assumed at the beginning. The velocity of an electron in a hydrogen atom is known as the Bohr velocity. This velocity can be derived from the formula for energy levels derived by Bohr. The velocity <em>v </em>of an electron including the principal quantum number <em>n</em> is given by <em>αc</em>/<em>n</em>. This paper elucidates the fact that this formula is built into Bohr’s quantum condition. It is also concluded in this paper that it is precisely this velocity formula that is the quantum condition that should have been assumed in the first place by Bohr. From Bohr’s quantum condition, it is impossible to derive the relativistic energy levels of a hydrogen atom, but they can be derived from the new quantum condition. This paper proposes raising the status of the previously-known Bohr velocity formula.

关 键 词:Relativistic Energy Levels of the Hydrogen Atom Bohr’s Quantum Condition Bohr Velocity Einstein’s Energy-Momentum Relationship Suto’s Energy-Momentum Relationship Relativistic Kinetic Energy 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象