Canard Solutions in a Predator-Prey Model  

Canard Solutions in a Predator-Prey Model

在线阅读下载全文

作  者:Guojian Lin Guojian Lin(School of Mathematics, Renmin University of China, Beijing, China)

机构地区:[1]School of Mathematics, Renmin University of China, Beijing, China

出  处:《Journal of Applied Mathematics and Physics》2022年第5期1678-1693,共16页应用数学与应用物理(英文)

摘  要:The canard explosion phenomenon in a predator-prey model with Michaelis-Menten functional response is analyzed in this paper by employing the geometric singular perturbation theory. First, some turning points, such as, fold point, transcritical point, pitchfork point, canard point, are identified;then Hopf bifurcation, relaxation oscillation, together with the canard transition from Hopf bifurcation to relaxation oscillation are discussed.The canard explosion phenomenon in a predator-prey model with Michaelis-Menten functional response is analyzed in this paper by employing the geometric singular perturbation theory. First, some turning points, such as, fold point, transcritical point, pitchfork point, canard point, are identified;then Hopf bifurcation, relaxation oscillation, together with the canard transition from Hopf bifurcation to relaxation oscillation are discussed.

关 键 词:Canard Explosion Relaxation Oscillation Predator-Prey Model Geometric Singular Perturbation Theory 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象