A Tutorial on Common Differential Equations and Solutions Useful for Modeling Epidemics Like COVID-19: Linear and Non-Linear Compartmentation Models  

A Tutorial on Common Differential Equations and Solutions Useful for Modeling Epidemics Like COVID-19: Linear and Non-Linear Compartmentation Models

在线阅读下载全文

作  者:Robert V. Mulkern Reyhaneh Nosrati Robert V. Mulkern;Reyhaneh Nosrati(Boston Children’s Hospital and Harvard Medical School, Boston, USA)

机构地区:[1]Boston Children’s Hospital and Harvard Medical School, Boston, USA

出  处:《Journal of Applied Mathematics and Physics》2022年第10期3053-3071,共19页应用数学与应用物理(英文)

摘  要:Purpose: To review some of the basic models, differential equations and solutions, both analytic and numerical, which produce time courses for the fractions of Susceptible (S), Infectious (I) and Recovered (R) fractions of the population during the epidemic and/or endemic conditions. Methods: Two and three-compartment models with analytic solutions to the proposed linear differential equations as well as models based on the non-linear differential equations first proposed by Kermack and McKendrick (KM) [1] a century ago are considered. The equations reviewed include the ability to slide between so-called Susceptible-Infected-Recovered (SIR), Susceptible-Infectious-Susceptible (SIS), Susceptible-Infectious (SI) and Susceptible-Infectious-Recovered-Susceptible (SIRS) models, effectively moving from epidemic to endemic characterizations of infectious disease. Results: Both the linear and KM model yield typical “curves” of the infected fraction being sought “to flatten” with the effects of social distancing/masking efforts and/or pharmaceutical interventions. Demonstrative applications of the solutions to fit real COVID-19 data, including linear and KM SIR fit data from the first 100 days following “lockdown” in the authors’ locale and to the total number of cases in the USA over the course of 1 year with SI and SIS models are provided. Conclusions: COVID-19 took us all by surprise, all wondering how to help. Spreading a basic understanding of some of the mathematics used by epidemiologists to model infectious diseases seemed like a good place to start and served as the primary purpose for this tutorial.Purpose: To review some of the basic models, differential equations and solutions, both analytic and numerical, which produce time courses for the fractions of Susceptible (S), Infectious (I) and Recovered (R) fractions of the population during the epidemic and/or endemic conditions. Methods: Two and three-compartment models with analytic solutions to the proposed linear differential equations as well as models based on the non-linear differential equations first proposed by Kermack and McKendrick (KM) [1] a century ago are considered. The equations reviewed include the ability to slide between so-called Susceptible-Infected-Recovered (SIR), Susceptible-Infectious-Susceptible (SIS), Susceptible-Infectious (SI) and Susceptible-Infectious-Recovered-Susceptible (SIRS) models, effectively moving from epidemic to endemic characterizations of infectious disease. Results: Both the linear and KM model yield typical “curves” of the infected fraction being sought “to flatten” with the effects of social distancing/masking efforts and/or pharmaceutical interventions. Demonstrative applications of the solutions to fit real COVID-19 data, including linear and KM SIR fit data from the first 100 days following “lockdown” in the authors’ locale and to the total number of cases in the USA over the course of 1 year with SI and SIS models are provided. Conclusions: COVID-19 took us all by surprise, all wondering how to help. Spreading a basic understanding of some of the mathematics used by epidemiologists to model infectious diseases seemed like a good place to start and served as the primary purpose for this tutorial.

关 键 词:COVID-19 Differential Equations Modelling Compartment Model 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象