On Some Properties of the Norm of the Spectral Geometric Mean  

On Some Properties of the Norm of the Spectral Geometric Mean

在线阅读下载全文

作  者:Xiangrui Kong Xiangrui Kong(School of Mathematical Sciences, Qufu Normal University, Qufu, China)

机构地区:[1]School of Mathematical Sciences, Qufu Normal University, Qufu, China

出  处:《Journal of Applied Mathematics and Physics》2022年第12期3629-3634,共6页应用数学与应用物理(英文)

摘  要:In this paper, we consider the norms related to spectral geometric means and geometric means. When A and B are positive and invertible, we have ||A<sup>-1</sup>#B|| ≤ ||A<sup>-1</sup>σ<sub>s</sub>B||. Let H be a Hilbert space and B(H) be the set of all bounded linear operators on H. Let A ∈ B(H). If ||A#X|| = ||Aσ<sub>s</sub>X||, ?X ∈ B(H)<sup>++</sup>, then A is a scalar. When is a C*-algebra and for any , we have that ||logA#B|| = ||logAσ<sub>s</sub>B||, then is commutative.In this paper, we consider the norms related to spectral geometric means and geometric means. When A and B are positive and invertible, we have ||A<sup>-1</sup>#B|| ≤ ||A<sup>-1</sup>σ<sub>s</sub>B||. Let H be a Hilbert space and B(H) be the set of all bounded linear operators on H. Let A ∈ B(H). If ||A#X|| = ||Aσ<sub>s</sub>X||, ?X ∈ B(H)<sup>++</sup>, then A is a scalar. When is a C*-algebra and for any , we have that ||logA#B|| = ||logAσ<sub>s</sub>B||, then is commutative.

关 键 词:Kubo-Ando Means Spectral Geometric Mean Geometric Mean C*-Algebra 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象