Hölder Derivative of the Koch Curve  

Hölder Derivative of the Koch Curve

在线阅读下载全文

作  者:Guangjun Yang Xiaoling Yang Ping Wang Guangjun Yang;Xiaoling Yang;Ping Wang(College of Mathematics and Statistics, Yunnan University, Kunming, China;College of Mathematics and Statistics, Yunnan University of Finance and Economy, Kunming, China;Department of Mathematics, Penn State University, Schuylkill Haven, USA)

机构地区:[1]College of Mathematics and Statistics, Yunnan University, Kunming, China [2]College of Mathematics and Statistics, Yunnan University of Finance and Economy, Kunming, China [3]Department of Mathematics, Penn State University, Schuylkill Haven, USA

出  处:《Journal of Applied Mathematics and Physics》2023年第1期101-114,共14页应用数学与应用物理(英文)

摘  要:In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.In this paper, we introduce a K Hölder p-adic derivative that can be applied to fractal curves with different Hölder exponent K. We will show that the Koch curve satisfies the Hölder condition with exponent and has a 4-adic arithmetic-analytic representation. We will prove that the Koch curve has exact -Hölder 4-adic derivative.

关 键 词:FRACTAL Koch Curve Hölder Inequality Hölder Derivative 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象