How to Make Systems of Nonlinear Autonomous ODEs with Attractor-Behavior, by First Making the General Solutions: Part Two  

How to Make Systems of Nonlinear Autonomous ODEs with Attractor-Behavior, by First Making the General Solutions: Part Two

在线阅读下载全文

作  者:Magne Stensland Magne Stensland(Moldjord, Norway)

机构地区:[1]Moldjord, Norway

出  处:《Journal of Applied Mathematics and Physics》2023年第1期115-134,共20页应用数学与应用物理(英文)

摘  要:This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.This paper is presenting a new method for making first-order systems of nonlinear autonomous ODEs that exhibit limit cycles with a specific geometric shape in two and three dimensions, or systems of ODEs where surfaces in three dimensions have attractor behavior. The method is to make the general solutions first by using the exponential function, sine, and cosine. We are building up the general solutions bit for bit according to constant terms that contain the formula of the desired limit cycle, and differentiating them. In Part One, we used only formulas for closed curves where all parts of the formula were of the same degree. In order to use many other formulas for closed curves, the method in this paper is to introduce an additional variable, and we will get an additional ODE. We will choose the part of the formula with the highest degree and multiply the other parts with an extra variable, so that all parts of the formula have the same degree, creating a constant term containing this new formula. We will place it under the fraction line in the solutions, building up the rest of the solutions according to this constant term and differentiating. Keeping this extra variable constant, we will achieve almost the desired result. Using the methods described in this paper, it is possible to make some systems of nonlinear ODEs that are exhibiting limit cycles with a distinct geometric shape in two or three dimensions and some surfaces having attractor behavior, where not all parts of the formulas are the same degree. The pictures show the result.

关 键 词:System of Nonlinear ODEs Limit Cycle General Solution ATTRACTOR 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象