检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ari Aluthge Scott A. Sarra Ari Aluthge;Scott A. Sarra(Marshall University, Huntington, WV, USA)
机构地区:[1]Marshall University, Huntington, WV, USA
出 处:《Journal of Applied Mathematics and Physics》2023年第1期192-208,共17页应用数学与应用物理(英文)
摘 要:The Milne-Simpson method is a two-step implicit linear multistep method for the numerical solution of ODEs that obtains the theoretically highest order of convergence for such a method. The stability region of the method is only an interval on the imaginary axis and the method is classified as weakly stable which causes non-physical oscillations to appear in numerical solutions. For this reason, the method is seldom used in applications. This work examines filtering techniques that improve the stability properties of the Milne-Simpson method while retaining its fourth-order convergence rate. The resulting filtered Milne-Simpson method is attractive as a method of lines integrator of linear time-dependent partial differential equations.The Milne-Simpson method is a two-step implicit linear multistep method for the numerical solution of ODEs that obtains the theoretically highest order of convergence for such a method. The stability region of the method is only an interval on the imaginary axis and the method is classified as weakly stable which causes non-physical oscillations to appear in numerical solutions. For this reason, the method is seldom used in applications. This work examines filtering techniques that improve the stability properties of the Milne-Simpson method while retaining its fourth-order convergence rate. The resulting filtered Milne-Simpson method is attractive as a method of lines integrator of linear time-dependent partial differential equations.
关 键 词:Ordinary Differential Equations Numerical Methods Weak Instability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222