Hilbert’s First Problem and the New Progress of Infinity Theory  

Hilbert’s First Problem and the New Progress of Infinity Theory

在线阅读下载全文

作  者:Xijia Wang Xijia Wang(Geophysical Society of Hunan Province, Changsha, China)

机构地区:[1]Geophysical Society of Hunan Province, Changsha, China

出  处:《Journal of Applied Mathematics and Physics》2023年第4期891-904,共14页应用数学与应用物理(英文)

摘  要:In the 19th century, Cantor created the infinite cardinal number theory based on the “1-1 correspondence” principle. The continuum hypothesis is proposed under this theoretical framework. In 1900, Hilbert made it the first problem in his famous speech on mathematical problems, which shows the importance of this question. We know that the infinitesimal problem triggered the second mathematical crisis in the 17-18th centuries. The Infinity problem is no less important than the infinitesimal problem. In the 21st century, Sergeyev introduced the Grossone method from the principle of “whole is greater than part”, and created another ruler for measuring infinite sets. The discussion in this paper shows that, compared with the cardinal number method, the Grossone method enables infinity calculation to achieve a leap from qualitative calculation to quantitative calculation. According to Grossone theory, there is neither the largest infinity and infinitesimal, nor the smallest infinity and infinitesimal. Hilbert’s first problem was caused by the immaturity of the infinity theory.In the 19th century, Cantor created the infinite cardinal number theory based on the “1-1 correspondence” principle. The continuum hypothesis is proposed under this theoretical framework. In 1900, Hilbert made it the first problem in his famous speech on mathematical problems, which shows the importance of this question. We know that the infinitesimal problem triggered the second mathematical crisis in the 17-18th centuries. The Infinity problem is no less important than the infinitesimal problem. In the 21st century, Sergeyev introduced the Grossone method from the principle of “whole is greater than part”, and created another ruler for measuring infinite sets. The discussion in this paper shows that, compared with the cardinal number method, the Grossone method enables infinity calculation to achieve a leap from qualitative calculation to quantitative calculation. According to Grossone theory, there is neither the largest infinity and infinitesimal, nor the smallest infinity and infinitesimal. Hilbert’s first problem was caused by the immaturity of the infinity theory.

关 键 词:Hilbert’s First Problem Cardinal Numbers Method Grossone Method Continuum Paradox Infinity Theory 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象