Existence and Concentration of Sign-Changing Solutions of Quasilinear Choquard Equation  

Existence and Concentration of Sign-Changing Solutions of Quasilinear Choquard Equation

在线阅读下载全文

作  者:Die Wang Yuqi Wang Shaoxiong Chen Die Wang;Yuqi Wang;Shaoxiong Chen(Department of Mathematics, Yunnan Normal University, Kunming, China)

机构地区:[1]Department of Mathematics, Yunnan Normal University, Kunming, China

出  处:《Journal of Applied Mathematics and Physics》2023年第4期1124-1151,共28页应用数学与应用物理(英文)

摘  要:In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a small parameter, I<sub>α</sub> is the Riesz potential. We establish for small ε the existence of a sequence of sign-changing solutions concentrating near a given local minimum point of the bounded potential function V by using the method of invariant sets of descending flow, perturbation method and truncation technique. .In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a small parameter, I<sub>α</sub> is the Riesz potential. We establish for small ε the existence of a sequence of sign-changing solutions concentrating near a given local minimum point of the bounded potential function V by using the method of invariant sets of descending flow, perturbation method and truncation technique. .

关 键 词:Quasilinear Choquard Equation The Method of Invariant Sets of Descending Flow TRUNCATION Sign-Changing Solutions 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象