The Proofs of Legendre’s Conjecture and Three Related Conjectures  

The Proofs of Legendre’s Conjecture and Three Related Conjectures

在线阅读下载全文

作  者:Wing K. Yu Wing K. Yu(Independent Researcher, Arlington, Washington State, USA)

机构地区:[1]Independent Researcher, Arlington, Washington State, USA

出  处:《Journal of Applied Mathematics and Physics》2023年第5期1319-1336,共18页应用数学与应用物理(英文)

摘  要:In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.In this paper, we prove Legendre’s conjecture: There is a prime number between n<sup>2</sup> and (n +1)<sup>2</sup> for every positive integer n. We also prove three related conjectures. The method that we use is to analyze binomial coefficients. It is developed by the author from the method of analyzing binomial central coefficients, that was used by Paul Erdős in his proof of Bertrand’s postulate - Chebyshev’s theorem.

关 键 词:Legendre’s Conjecture Bertrand’s Postulate - Chebyshev’s Theorem Oppermann’s Conjecture Brocard’s Conjecture Andrica’s Conjecture 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象