The Local Theory of Completely 1-Summing Mapping Spaces  

The Local Theory of Completely 1-Summing Mapping Spaces

在线阅读下载全文

作  者:Yafei Zhao Yuanyi Wang Yafei Zhao;Yuanyi Wang(Department of Mathematics, Zhejiang International Studies University, Hangzhou, China;College of Science and Technology, Ningbo University, Ningbo, China)

机构地区:[1]Department of Mathematics, Zhejiang International Studies University, Hangzhou, China [2]College of Science and Technology, Ningbo University, Ningbo, China

出  处:《Journal of Applied Mathematics and Physics》2023年第6期1570-1579,共10页应用数学与应用物理(英文)

摘  要:In this paper, we investigate local properties in the system of completely 1-summing mapping spaces. We introduce notions of injectivity, local reflexivity, exactness, nuclearity and finite-representability in the system of completely 1-summing mapping spaces. First we obtain that if V has WEP, V is locally reflexive in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if it is locally reflexive in the system (Ⅰ(⋅,⋅), t(⋅)). Furthermore we prove that an operator space V ⊆ B(H) is exact in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)). At last, we show that an operator space V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V = C.In this paper, we investigate local properties in the system of completely 1-summing mapping spaces. We introduce notions of injectivity, local reflexivity, exactness, nuclearity and finite-representability in the system of completely 1-summing mapping spaces. First we obtain that if V has WEP, V is locally reflexive in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if it is locally reflexive in the system (Ⅰ(⋅,⋅), t(⋅)). Furthermore we prove that an operator space V ⊆ B(H) is exact in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)). At last, we show that an operator space V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V = C.

关 键 词:Completely 1-Summing Mapping Space Injectivity NUCLEARITY Local Reflexivity EXACTNESS Finite-Representability and Operator Space 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象