On the Hybrid Model of Nerve Pulse: Mathematical Analysis and Numerical Results  

On the Hybrid Model of Nerve Pulse: Mathematical Analysis and Numerical Results

在线阅读下载全文

作  者:Alexander Mengnjo Jake Leonard Nkeck Alexander Mengnjo;Jake Leonard Nkeck(Department of Mathematics, Faculty of Science, University of Buea, Buea, Cameroon)

机构地区:[1]Department of Mathematics, Faculty of Science, University of Buea, Buea, Cameroon

出  处:《Journal of Applied Mathematics and Physics》2023年第8期2373-2396,共24页应用数学与应用物理(英文)

摘  要:Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the physiological processes in the nerve cell. Widely used models include: the Hodgkin-Huxley (H-H) model, which is based entirely on the electrical activity of the nerve cell;and the Heimburg and Jackson (H-J), model based on the thermodynamic activity of the nerve cell. These classes of models do not, individually, give a complete picture of the processes that lead to nerve pulse generation and propagation. Recently, a hybrid model proposed by Mengnjo, Dikandé and Ngwa (M-D-N), takes into consideration both the electrical and thermodynamic activities of the nerve cell. In their work, the first three bound states of the model are analytically computed and they showed great resemblance to some of the experimentally observed pulse profiles. With these bound states, the M-D-N model reduces to an initial value problem of a linear parabolic partial differential equation with variable coefficients. In this work we consider the resulting initial value problem and, using the theory of function spaces, propose and prove conditions under which such equations will admit unique solutions. We then verify that the resulting initial value problem from the M-D-N model satisfies these conditions and so has a unique solution. Given that the derived initial value problem is complex and there are no known analytic techniques that can be deployed to obtain its solution, we designed a numerical experiment to estimate the solutions. The simulations revealed that the unique solution is a stable pulse that propagates in the x-t plane with constant velocity and maintains the shape of the initial profile.Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the physiological processes in the nerve cell. Widely used models include: the Hodgkin-Huxley (H-H) model, which is based entirely on the electrical activity of the nerve cell;and the Heimburg and Jackson (H-J), model based on the thermodynamic activity of the nerve cell. These classes of models do not, individually, give a complete picture of the processes that lead to nerve pulse generation and propagation. Recently, a hybrid model proposed by Mengnjo, Dikandé and Ngwa (M-D-N), takes into consideration both the electrical and thermodynamic activities of the nerve cell. In their work, the first three bound states of the model are analytically computed and they showed great resemblance to some of the experimentally observed pulse profiles. With these bound states, the M-D-N model reduces to an initial value problem of a linear parabolic partial differential equation with variable coefficients. In this work we consider the resulting initial value problem and, using the theory of function spaces, propose and prove conditions under which such equations will admit unique solutions. We then verify that the resulting initial value problem from the M-D-N model satisfies these conditions and so has a unique solution. Given that the derived initial value problem is complex and there are no known analytic techniques that can be deployed to obtain its solution, we designed a numerical experiment to estimate the solutions. The simulations revealed that the unique solution is a stable pulse that propagates in the x-t plane with constant velocity and maintains the shape of the initial profile.

关 键 词:Nerve Impulse Nerve Pulse Propagation Hodgkin-Huxley Equation Korteweg-de Vries Equation Heimburg Jackson Model NEUROPHYSIOLOGY 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象