Separating Space and Time for Dimensional Analysis and Euclidean Relational Modeling  

Separating Space and Time for Dimensional Analysis and Euclidean Relational Modeling

在线阅读下载全文

作  者:Steven D. P. Moore Steven D. P. Moore(Independent Researcher, Milton, Canada)

机构地区:[1]Independent Researcher, Milton, Canada

出  处:《Journal of Applied Mathematics and Physics》2023年第9期2704-2738,共35页应用数学与应用物理(英文)

摘  要:The theory of relativity links space and time to account for observed events in four-dimensional space. In this article we describe an alternative static state causal discrete time modeling system using an omniscient viewpoint of dynamical systems that can express object relations in the moment(s) they are observed. To do this, three key components are required, including the introduction of independent object-relative dimensional metrics, a zero-dimensional frame of reference, and application of Euclidean geometry for modeling. Procedures separate planes of matter, extensions of space (relational distance) and time (duration) using object-oriented dimensional quantities. Quantities are converted into base units using symmetry for space (Dihedral<sub>360</sub>), time (Dihedral<sub>12</sub>), rotation (Dihedral<sub>24</sub>), and scale (Dihedral<sub>10</sub>). Geometric elements construct static state outputs in discrete time models rather than continuous time using calculus, thereby using dimensional and positional natural number numerals that can visually encode complex data instead of using abstraction and irrationals. Static state Euclidean geometric models of object relations are both measured and expressed in the state they are observed in zero-time as defined by a signal. The frame can include multiple observer frames of reference where each origin, point, is the location of a distinct privileged point of reference. Two broad and diverse applications are presented: a one-dimensional spatiotemporal orbital model, and a thought experiment related to a physical theory beyond Planck limits. We suggest that expanding methodologies and continued formalization, novel tools for physics can be considered along with applications for computational discrete geometric modeling.The theory of relativity links space and time to account for observed events in four-dimensional space. In this article we describe an alternative static state causal discrete time modeling system using an omniscient viewpoint of dynamical systems that can express object relations in the moment(s) they are observed. To do this, three key components are required, including the introduction of independent object-relative dimensional metrics, a zero-dimensional frame of reference, and application of Euclidean geometry for modeling. Procedures separate planes of matter, extensions of space (relational distance) and time (duration) using object-oriented dimensional quantities. Quantities are converted into base units using symmetry for space (Dihedral<sub>360</sub>), time (Dihedral<sub>12</sub>), rotation (Dihedral<sub>24</sub>), and scale (Dihedral<sub>10</sub>). Geometric elements construct static state outputs in discrete time models rather than continuous time using calculus, thereby using dimensional and positional natural number numerals that can visually encode complex data instead of using abstraction and irrationals. Static state Euclidean geometric models of object relations are both measured and expressed in the state they are observed in zero-time as defined by a signal. The frame can include multiple observer frames of reference where each origin, point, is the location of a distinct privileged point of reference. Two broad and diverse applications are presented: a one-dimensional spatiotemporal orbital model, and a thought experiment related to a physical theory beyond Planck limits. We suggest that expanding methodologies and continued formalization, novel tools for physics can be considered along with applications for computational discrete geometric modeling.

关 键 词:SPACETIME RELATIONALISM QUANTUM CLASSICAL SIGNAL Discrete Geometry 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象