检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Houju Hori Jr. Houju Hori Jr.(Nara Community, Tsubakikishi Shrine, Nara, Japan)
机构地区:[1]Nara Community, Tsubakikishi Shrine, Nara, Japan
出 处:《Journal of Applied Mathematics and Physics》2023年第9期2783-2788,共6页应用数学与应用物理(英文)
摘 要:This paper discusses a method for identifying states in a multistage Decision Making Problem in which an Indifferent Event is either predetermined or can be automatically derived after the fact. First, when they are pre-set, the amount of possible information about Indifferent Event tends to be large. Therefore, since the decision is risk tolerant, the Max-Product method of Tanaka et al. is used to calculate the expected utility possibility. Next, in the case of automatic derivation after the fact, the amount of information on the possibility of Indifferent Event is relatively small, so the expected utility possibility is derived using Zadeh’s Fuzzy Event Possibility Measure. Here, it is assumed that the setting of the utility function is independent of the information on the occurrence of the Indifferent Event and is identified by the decision maker by lot drawing using the certainty equivalence method. As a concrete example, we focus on the pass/fail decision of a recommendation test, which is a two choice question in the No-Data Problem, and illustrate the multistage state identification method. .This paper discusses a method for identifying states in a multistage Decision Making Problem in which an Indifferent Event is either predetermined or can be automatically derived after the fact. First, when they are pre-set, the amount of possible information about Indifferent Event tends to be large. Therefore, since the decision is risk tolerant, the Max-Product method of Tanaka et al. is used to calculate the expected utility possibility. Next, in the case of automatic derivation after the fact, the amount of information on the possibility of Indifferent Event is relatively small, so the expected utility possibility is derived using Zadeh’s Fuzzy Event Possibility Measure. Here, it is assumed that the setting of the utility function is independent of the information on the occurrence of the Indifferent Event and is identified by the decision maker by lot drawing using the certainty equivalence method. As a concrete example, we focus on the pass/fail decision of a recommendation test, which is a two choice question in the No-Data Problem, and illustrate the multistage state identification method. .
关 键 词:Fuzzy Event Reserved Judgment Indifferent Event Expected Utility Max-Product
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.64.39