检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Koshun Suto Koshun Suto(Chudai-Ji Temple, Isesaki, Japan)
机构地区:[1]Chudai-Ji Temple, Isesaki, Japan
出 处:《Journal of Applied Mathematics and Physics》2023年第12期3953-3961,共9页应用数学与应用物理(英文)
摘 要:Einstein’s energy-momentum relationship is a formula that typifies the special theory of relativity (STR). According to the STR, when the velocity of a moving body increases, so does the mass of the body. The STR asserts that the mass of a body depends of the velocity at which the body moves. However, when energy is imparted to a body, this relation holds because kinetic energy increases. When the motion of an electron in an atom is discussed at the level of classical quantum theory, the kinetic energy of the electron is increased due to the emission of energy. At this time, the relativistic energy of the electron decreases, and the mass of the electron also decreases. The STR is not applicable to an electron in an atom. This paper derives an energy-momentum relationship applicable to an electron in an atom. The formula which determines the mass of an electron in an atom is also derived by using that relationship.Einstein’s energy-momentum relationship is a formula that typifies the special theory of relativity (STR). According to the STR, when the velocity of a moving body increases, so does the mass of the body. The STR asserts that the mass of a body depends of the velocity at which the body moves. However, when energy is imparted to a body, this relation holds because kinetic energy increases. When the motion of an electron in an atom is discussed at the level of classical quantum theory, the kinetic energy of the electron is increased due to the emission of energy. At this time, the relativistic energy of the electron decreases, and the mass of the electron also decreases. The STR is not applicable to an electron in an atom. This paper derives an energy-momentum relationship applicable to an electron in an atom. The formula which determines the mass of an electron in an atom is also derived by using that relationship.
关 键 词:Einstein’s Energy-Momentum Relationship Relativistic Energy Electron Mass Bohr’s Quantum Condition Potential Energy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7