Global Stability in a Graph p-Laplacian SIR Epidemic ModelS  

Global Stability in a Graph p-Laplacian SIR Epidemic ModelS

在线阅读下载全文

作  者:Ling Zhou Yu Zhang Zuhan Liu Ling Zhou;Yu Zhang;Zuhan Liu(School of Mathematical Science, Yangzhou University, Yangzhou, China)

机构地区:[1]School of Mathematical Science, Yangzhou University, Yangzhou, China

出  处:《Journal of Applied Mathematics and Physics》2023年第12期3962-3969,共8页应用数学与应用物理(英文)

摘  要:A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equilibrium is globally asymptotically stable if the basic reproduction number r<sub>0</sub> is greater than 1, while the disease-free equilibrium is globally asymptotically stable if r<sub>0</sub> is lower than 1. We extend the stability results of SIR models with graph Laplacian ( p = 2 ) to general graph p-Laplacian.A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equilibrium is globally asymptotically stable if the basic reproduction number r<sub>0</sub> is greater than 1, while the disease-free equilibrium is globally asymptotically stable if r<sub>0</sub> is lower than 1. We extend the stability results of SIR models with graph Laplacian ( p = 2 ) to general graph p-Laplacian.

关 键 词:P-LAPLACIAN NETWORK Global Stability Lyapunov Function 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象