Non-Spectrality of Certain Self-Affine Measures on the Generalized Spatial Sierpinski Gasket  

Non-Spectrality of Certain Self-Affine Measures on the Generalized Spatial Sierpinski Gasket

在线阅读下载全文

作  者:Yongli Hu Zhicheng Zhang Qi Wang Yongli Hu;Zhicheng Zhang;Qi Wang(School of Mathematics and Data Science, Shaanxi University of Science & Technology, Xian, China)

机构地区:[1]School of Mathematics and Data Science, Shaanxi University of Science & Technology, Xian, China

出  处:《Journal of Applied Mathematics and Physics》2024年第11期3964-3981,共18页应用数学与应用物理(英文)

摘  要:Let μM,Dbe a self-affine measure associated with an expanding integer matrix M=[ p1,0,0;p4,p2,0;p5,0,p3]and the digit set D={ 0,e1,e2,e3}in the space R3, where p1,p2,p3∈Z\{ 0,±1 }, p4,p5∈Zand e1,e2,e3are the standard basis of unit column vectors in R3. In this paper, we mainly consider the case p1,p2,p3∈2Z+1, p2≠p3, p4=l(p1−p2), p5=l(p3−p1),where l∈2Z. We prove that μM,Dis a non-spectral measure, and there are at most 4-element μM,D-orthogonal exponentials, and the number 4 is the best. The results here generalize the known results.Let μM,Dbe a self-affine measure associated with an expanding integer matrix M=[ p1,0,0;p4,p2,0;p5,0,p3]and the digit set D={ 0,e1,e2,e3}in the space R3, where p1,p2,p3∈Z\{ 0,±1 }, p4,p5∈Zand e1,e2,e3are the standard basis of unit column vectors in R3. In this paper, we mainly consider the case p1,p2,p3∈2Z+1, p2≠p3, p4=l(p1−p2), p5=l(p3−p1),where l∈2Z. We prove that μM,Dis a non-spectral measure, and there are at most 4-element μM,D-orthogonal exponentials, and the number 4 is the best. The results here generalize the known results.

关 键 词:Sierpinski Gasket Non-Spectrality Orthogonal Exponentials Digit Set 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象