机构地区:[1]College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China [2]College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China [3]College of Economics and Management, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China [4]College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
出 处:《Journal of Applied Mathematics and Physics》2024年第11期4042-4055,共14页应用数学与应用物理(英文)
摘 要:At present, the use of furnaces in the northern rural areas of China is very common, due to the insufficient burning of fuel (coal, wood, etc.), carbon monoxide (CO) and other toxic gases are produced, CO colorless and odorless, difficult to find in time, and bring huge safety risks to the life and health of residents. Based on the above problems, we developed a gas monitoring and removal device which could reduce the effect of extinction coefficient. The device was composed of ash settling area, gas disturbance area, spectral absorption identification area and gas removal area. After the air entered the device, the large-size particles were first settled to purify the solid particles in the gas, the gas was disturbed through the multi-layer separator to achieve the turbulent production of the gas, and then the gas was identified through the optical element of the direct absorption spectrum technology. When the toxic gas component reached the threshold, the spray device would automatically start for chemical removal to achieve the role of purifying the gas. At the same time, the device’s alarm could be alerted by buzzer and flash to remind users to evacuate in time. By improving the optical device, the effect of extinction coefficient on measurement was reduced and the monitoring accuracy was improved.At present, the use of furnaces in the northern rural areas of China is very common, due to the insufficient burning of fuel (coal, wood, etc.), carbon monoxide (CO) and other toxic gases are produced, CO colorless and odorless, difficult to find in time, and bring huge safety risks to the life and health of residents. Based on the above problems, we developed a gas monitoring and removal device which could reduce the effect of extinction coefficient. The device was composed of ash settling area, gas disturbance area, spectral absorption identification area and gas removal area. After the air entered the device, the large-size particles were first settled to purify the solid particles in the gas, the gas was disturbed through the multi-layer separator to achieve the turbulent production of the gas, and then the gas was identified through the optical element of the direct absorption spectrum technology. When the toxic gas component reached the threshold, the spray device would automatically start for chemical removal to achieve the role of purifying the gas. At the same time, the device’s alarm could be alerted by buzzer and flash to remind users to evacuate in time. By improving the optical device, the effect of extinction coefficient on measurement was reduced and the monitoring accuracy was improved.
关 键 词:Atmospheric Monitoring Carbon Monoxide Direct Absorption Spectros-copy Gas Removal Extinction Coefficient
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...