The Coxeter Trisection and the Hadwiger Conjecture in Multidimensional Spaces  

The Coxeter Trisection and the Hadwiger Conjecture in Multidimensional Spaces

在线阅读下载全文

作  者:István Lénárt István Lénárt(Etvs Lornd University, Budapest, Hungary)

机构地区:[1]Etvs Lornd University, Budapest, Hungary

出  处:《Journal of Applied Mathematics and Physics》2024年第12期4301-4321,共21页应用数学与应用物理(英文)

摘  要:In this article, I consider the right triangle as the simplex in the Euclidean plane, and extend this definition to higher dimensions. The n-dimensional simplex has one hypotenuse and (n−1)legs (catheti). The (n−1)legs define an orthogonal path of edges in the solid with perpendicular adjacent edges along the path. The length of the hypotenuse and the volume of the solid can be calculated without the Cayley-Menger determinant, by direct extension of the corresponding right triangle formulas. I give a proof of the existence of these shapes, describe the distribution of right angles in them, give an algebraic proof of the Coxeter trisection of a right tetrahedron into three smaller right tetrahedra, and generalize this construction to n-dimensional spaces. Finally, I investigate the connection between the Coxeter partition and the Hadwiger conjecture on the partition of the simplex into orthoschemes, which I call Pythagorean simplexes.In this article, I consider the right triangle as the simplex in the Euclidean plane, and extend this definition to higher dimensions. The n-dimensional simplex has one hypotenuse and (n−1)legs (catheti). The (n−1)legs define an orthogonal path of edges in the solid with perpendicular adjacent edges along the path. The length of the hypotenuse and the volume of the solid can be calculated without the Cayley-Menger determinant, by direct extension of the corresponding right triangle formulas. I give a proof of the existence of these shapes, describe the distribution of right angles in them, give an algebraic proof of the Coxeter trisection of a right tetrahedron into three smaller right tetrahedra, and generalize this construction to n-dimensional spaces. Finally, I investigate the connection between the Coxeter partition and the Hadwiger conjecture on the partition of the simplex into orthoschemes, which I call Pythagorean simplexes.

关 键 词:Generalized Pythagoras Theorem Description of a Pythagorean Simplex Pythagorean Unit Simplex Coxeter Partition of a Simplex in -Dimensional Space Relation to the Hadwiger Conjecture 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象