Hölder Derivative of Harmonic Functions on Sierpinski Gasket  

Hölder Derivative of Harmonic Functions on Sierpinski Gasket

作  者:Guangjun Yang Ping Wang Guangjun Yang;Ping Wang(College of Mathematics and Statistics, Yunnan University, Kunming, China;Department of Mathematics, Penn State University, Schuylkill Haven, PA, USA)

机构地区:[1]College of Mathematics and Statistics, Yunnan University, Kunming, China [2]Department of Mathematics, Penn State University, Schuylkill Haven, PA, USA

出  处:《Journal of Applied Mathematics and Physics》2025年第2期465-474,共10页应用数学与应用物理(英文)

摘  要:In the past years, we established analytic expressions of various fractals and discussed Hölder derivatives of the expressions. Based on our earlier results, we will study the properties of harmonic functions on a very important fractal, the Sierpinski gasket (SG). Our main result is that the harmonic function on SG satisfies a Hölder inequality of order α=ln35\ln2.In the past years, we established analytic expressions of various fractals and discussed Hölder derivatives of the expressions. Based on our earlier results, we will study the properties of harmonic functions on a very important fractal, the Sierpinski gasket (SG). Our main result is that the harmonic function on SG satisfies a Hölder inequality of order α=ln35\ln2.

关 键 词:Holder Derivative Harmonic Function Sierpinski Gasket 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象