Quantization of Fractional Singular Lagrangian Systems with Second-Order Derivatives Using Path Integral Method  

Quantization of Fractional Singular Lagrangian Systems with Second-Order Derivatives Using Path Integral Method

在线阅读下载全文

作  者:Eyad Hasan Hasan Osama Abdalla Abu-Haija Eyad Hasan Hasan;Osama Abdalla Abu-Haija(Applied Physics Department, Faculty of Science, Tafila Technical University, Tafila, Jordan)

机构地区:[1]Applied Physics Department, Faculty of Science, Tafila Technical University, Tafila, Jordan

出  处:《Journal of Applied Mathematics and Physics》2025年第2期567-574,共8页应用数学与应用物理(英文)

摘  要:We examined the fractional second-order singular Lagrangian systems. We wrote the action principal function and equations of motion as fractional total differential equations. Also, we constructed the set of Hamilton-Jacobi partial differential equations (HJPDEs) within fractional calculus. We formulated the fractional path integral quantization for these systems. A mathematical example is examined with first- and second-class constraints.We examined the fractional second-order singular Lagrangian systems. We wrote the action principal function and equations of motion as fractional total differential equations. Also, we constructed the set of Hamilton-Jacobi partial differential equations (HJPDEs) within fractional calculus. We formulated the fractional path integral quantization for these systems. A mathematical example is examined with first- and second-class constraints.

关 键 词:Fractional Path Integral Fractional Singular Lagrangians Fractional Calculus 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象