Electromagnetic Gauges and Maxwell Lagrangians Applied to the Determination of Curvature in the Space-Time and their Applications  

Electromagnetic Gauges and Maxwell Lagrangians Applied to the Determination of Curvature in the Space-Time and their Applications

在线阅读下载全文

作  者:Francisco Bulnes 

机构地区:[1]Department of Research in Mathematics and Engineering, Technological Institute of High Studies of Chalco, Chalco, Mexico.

出  处:《Journal of Electromagnetic Analysis and Applications》2012年第6期252-266,共15页电磁分析与应用期刊(英文)

摘  要:If we consider the finite actions of electromagnetic fields in Hamiltonian regime and use vector bundles of geodesic in movement of the charges with a shape operator (connection) that measures the curvature of a geometrical space on these geodesic (using the light caused from these points (charges) acting with the infinite null of gravitational field (background)) we can establish a model of the curvature through gauges inside the electromagnetic context. In partular this point of view is useful when it is about to go on in a quantized version from the curvature where the space is distorted by the interactions between particles. This demonstrates that curvature and torsion effect in the space-time are caused in the quantum dimension as back-reaction effects in photon propagation. Also this permits the observational verification and encodes of the gravity through of light fields deformations. The much theoretical information obtained using the observable effects like distortions is used to establish inside this Lagrangian context a classification of useful spaces of electro-dynamic configuration for the description of different interactions of field in the Universe related with gravity. We propose and design one detector of curvature using a cosmic censor of the space-time developed through distortional 3-dimensional sphere. Some technological applications of the used methods are exhibited.If we consider the finite actions of electromagnetic fields in Hamiltonian regime and use vector bundles of geodesic in movement of the charges with a shape operator (connection) that measures the curvature of a geometrical space on these geodesic (using the light caused from these points (charges) acting with the infinite null of gravitational field (background)) we can establish a model of the curvature through gauges inside the electromagnetic context. In partular this point of view is useful when it is about to go on in a quantized version from the curvature where the space is distorted by the interactions between particles. This demonstrates that curvature and torsion effect in the space-time are caused in the quantum dimension as back-reaction effects in photon propagation. Also this permits the observational verification and encodes of the gravity through of light fields deformations. The much theoretical information obtained using the observable effects like distortions is used to establish inside this Lagrangian context a classification of useful spaces of electro-dynamic configuration for the description of different interactions of field in the Universe related with gravity. We propose and design one detector of curvature using a cosmic censor of the space-time developed through distortional 3-dimensional sphere. Some technological applications of the used methods are exhibited.

关 键 词:BACK-REACTION Effects Electromagnetic BUNDLES Form Operator Electro-Gravitational Detectors Maxwell’s Lagrangian Quantum CURVATURE 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象